Chiara Vittoni

PERSONAL DATA

Place and Date of Birth: Borgomanero (Italy), 30.06.1989 Adress: via Giardino Grande 12, 28040, Lesa (NO)- Itlay

Phone: 338-4333184

E-mail: chiara.vittoni@uniupo.it

BIO AND EDUCATION

In progress: **Visiting PhD Student** at the Institute for Materials and Processes, University of Edinburgh's School of Engineering.

In progress: **PhD Student in Chemistry & Biology** at Dipartimento di Scienza ed Innovazione Tecnologica, Università degli Studi del Piemonte Orientale.

April 2014: **Master's Degree in Chemical Sciences** at Dipartimento di Scienza ed Innovazione Tecnologica, Università degli Studi del Piemonte Orientale, with mark 110/110 cum laude.

October 2011: **Bachelor's Degree in Materials Science** at Facoltà di Scienze Matematiche, Fisiche e Naturali, Università degli Studi del Piemonte Orientale "Amedeo Avogadro", with mark 110/110 cum laude and honorable mention.

July 2008: **High School Scientific Degree** at Liceo Scientifico "Galileo Galilei" (Borgomanero, NO), with mark 100/100.

UNIVERSITY CAREER

2014	Research Fellow, Università del Piemonte Orientale
2014	Nesearch Fellow, Offiversita del Flemonte Offentale

MAIN FIELDS OF INTEREST

- 1. Dye Sensitized Solar Cells (DSSCs)
- 2. Siliceous Materials
- 3. CO₂ capture

CURRENT ISSUES OF RESEARCH

1. Comparative study of CO₂ adsorption on different siliceous materials

In recent decades, the atmospheric concentration of CO₂ is strongly increasing, contributing to the change of the Earth's average temperature. In order to prevent the increase in the

atmospheric concentration of CO_2 , a very promising technology is the CO_2 capture using solid sorbents. Different inorganic-organic siliceous materials have been prepared and tested as sorbents for CO_2 . Several silica based materials with different structure, morphology and particle size were selected in order to understand the effect of their physico-chemical properties on the CO_2 adsorption.

PAPERS

1. Chiara Vittoni, Vittoria Sacchetto, Daniele Costenaro, Simone Mastroianni, Andreas Hinsch, Leonardo Marchese and Chiara Bisio, "Gelation of solvent-free electrolyte using siliceous materials with different size and porosity for applications in dye sensitized solar cells", Solar Energy, 2016, 124, 101-113.

AWARDS

1. Winner of Prize for the best Master thesis in memory of prof. Giuseppe Dellacasa (AA. 2012-2013).